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1. Introduction

The objective of this program is to realize dense modifiable interconnections in systems

such as neural networks using photorefractive volume holograms. Li this report we describe

an experimental two-layer optical neural network built at Caltech, using photorefractive

approach, for handwritten character-alphabet (A-Z) recognition.

Twenty years ago, Minsky and Papert proved that a single-layer perceptron cannot

solve problems outside a very narrow class, which put an end to the early efforts in neural

network research.' The recent resurgence in this field was initiated partly by the discovery

of more complex artificial neural net architectures such as multilayer networks and related

learning algorithms. 2 The use of multilayer networks was further justified by Hornik et

al., who showed that standard multilayer feedforward networks with as few as one hidden

layer using arbitrary squashing functions are capable of approximating any Borel measur-

able function to any desired degree of accuracy, provided sufficiently many hidden units

are available.' Optics is particularly suited and highly desirable for implementation of

feedforward multilayer neural networks because of the high parallelism that optics provide

and the similarity between feedforward structures and classical optical correlators. 4' 5 Most

important is the maturing of several critical technologies, such as spatial light modulators

with light amplification and nonlinear thresholding capabilities6 , and dynamic photorefrac-

tive volume holograms7 , that are necessary for realization of multilayer learning networks.

In this report we describe an experiment in which such devices are used to implement a

multilayer network.

The system that we built is a two-layer network and it was trained based on Kanerva's

model of Sparse, Distributed Memory (SDM) 8 . Kanerva's learning model was chosen be-

cause it is relatively easy to implement compared with other learning algorithms. The

system uses photorefractive holograms to implement synaptic interconnections and liq-

uid crystal light valves (LCLVs) to perform nonlinear thresholding operations. The first

layer has fixed, random weights of interconnections, which map each input pattern into a

very large sparse, distributed internal representation. The second layer is trained by the

sum-of-outer-products rule, which associates internal representations of different classes of

characters to different responses of output neurons. t *- shown that the trained network



can recognize not only all the training patterns but also a fairly large percentage of test

patterns that it has never seen.

2. Sparse, Distributed Memory Model

In this section we briefly review Kanerva's Sparse, Distributed Memory (SDM) 9

to point out the necessary characteristics that the optical system must incorporate. A

schematic representation of a two-layer network is shown in Fig. 1, which consists of an

input layer globally interconnected to a hidden layer, which is interconected through a sec-

ond weighted network to an output layer. The system is trained so that the desired outputs

y),...-, y(M) are produced for the respective input patterns X(),- .,X(M). Moreover,

an output Y of the network is close to Y(J) when the system is presented with the input X

close to X (j). YO') and X(j) are real vectors of length m and n, respectively, with compo-

nents restricted to the binary set B = {-1, ±11. In general, the interconnection weights

of both layers are modifiable, so that the system can be trained to perform a desired pat-

tern transformation from the input space to the output space. In SDM, however, the first

layer acts as a fixed-weight preprocessor encoding each n-bit input into a very large s-bit

internal representation, s > n. The second layer is a trainable sum-of-outer-products net-

work, which is programmed to recognize the higher-dimensional internal representations.

Kanerva's primary contribution is the specification of the preprocessor, that is, how to

map each n-bit input into a very large s-bit internal representation in such a way as to

permit the capacity to exceed by far any linear relationship with the input dimension. This

is important because in most applications, the dimension of the input (which is approxi-

mately equal to the capacity of a single layer machine) is much smaller than the number

of patterns we wish to recognize.

Consider the s-bit internal representation to be a binary vector embeded in Rs, with

components restricted to zero and one, and let f6 : R' -4 R' be the function which applies

the unit step function (translated by 0) to each coordinate independently. That is, the ith

coordinate of fo(U) is 1 if Ui > 0 and 0 if Ui < 0.

The operation of the firs', lvor i- iow bo oasilv descrild. Til y> ,, weiglit n ai., AA

Z is populated at random by +1's and -l's. The input vector to the hidden neurons is

-- -,, -- , ,n - ,, ,,,, mn m m m n nunnnmm n mum I n u



given by the matrix-vector product ZX, which is thresholded by the function fo to become

the output vector H = fo(ZX) of the hidden neurons. With 0 = n - 2r, the s-bit word H

contains a one in the ith coordinate if and only if X is within Hamming distance r of the

ith row of Z. If the parameters r and s are set correctly, then the number of l's in the

representation H will be very small in comparison to the number of 0's. Hence H can be

considered to be a sparse, distributed representation of X: sparse because there are few

l's, distributed because several l's share in the representation of X.

The overall SDM can be regarded as a sum-of-outer-products associative memory

operating on the sparse, distributed representation of X. Let g : R ' --- R' be the vector

signum function, which takes the sign of each coordinate independently. Then the response

of the output neuron is Y = g(WH), where the synaptic weight matrix W for the second

layer is given by
M

IV = ZY(J)[fe(ZX(j))] t . (1)
j=1

It has been shown'0 that by allowing s, the dimension of hidden layer, to grow ex-

ponentially with the input dimension n, the capacity of the SDM can grow exponentially

in n, achieving the universal upper bound of any associati'-e memory. This is in sharp

contrast to the capacity of a single layer associative memory, which grows at most linearly

with the input dimension. In terms of pattern recognition, large s implies mapping input

vectors into a higher dimensional space so that it is much easier to find the appropriate

decision boundaries. In this way, a linearly unseparable problem can be converted into a

linearly separable one at the hidden layer".

3. Optical Implementation

The optical implementation of a two-layer neural network trained by SDM requires

both fixed and modifiable interconnection matrices. Dynamic volume holograms are very

promising candidates for the implementation of such interconnection matrices because of

the three dimensional storage capacity possible within the volume of a crystal, the well-

studied dynamic response of photorefractive crystals and the ability to fix photorefractive

holograms. Noilincar cffects, such as fanning in phtorcfractivc crystals, generally a nui-

sance, are helpful for the implementation of the random interconnection nmatrix in the
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first layer. Spatial light modulators (SLMs) with nonlinear thrcsholding and amplification

functions can be used to simulate neural response. In our experiment, liquid crystal light

valves (LCLVs) manufactured by Hughes are used both for providing the input, gain, and

for use as thresholding devices.

The schematic diagram of our two-layer system setup is shown in Fig. 2. The inter-

connection matrices are recorded in photorefractive crystals in the form of their Fourier

transforms using an argon-ion laser (A = 514 nm). The first layer consists of a video

monitor (VM), a liquid crystal light valve (LCLV1) and a LiNbO3 photorefractive crystal

(PR1). There axe 100 input units, arranged into a 10 x 10 pixel grid, and input character

patterns are drawn on this grid. Input patterns are presented on VM, imaged onto LCLV1

by an imaging lens (L1), and read out by the laser beam on the other side of LCLV1. Here,

LCLV1 acts as an incoherent to coherent converter and also an image amplifier. For the

second layer, the hidden neuron array and the output neuron array are implemented by

a second liquid crystal light valve (LCLV2) and a CCD detector, respectively. The inter-

connection weights are recorded in the second LiNbO3 crystal (PR2). In this experiment,

the hidden layer consists of an array of approximately 300 x 300 neurons. There are 26

output neurons for this system, represented by 26 pixels in the CCD detector plane, each

responding to one letter in the alphabet (A-Z). The training of this network is done first

for the first layer followed by the training of the second layer.

During the training of the first layer, random dot patterns were used as training

patterns, split into two parts, and each was Fourier transforned by lenses L2 and L3.

These two Fourier transformed random patterns were used to record a hologram which

consists of gratings of random strength. This process was repeated many times so that a

volume hologram with random interconnection weights was recorded. Furthermore, in the

crystal we used, the photorefractive nonlinearity is sufficiently strong that a laser beam

passing through the crystal loses much of its power to a broad fan of light resulting from

amplification of radiation scattered by imperfections in the crystal1 2 and from asymmetric

refractive index change due to nonuniformity of the incident beam"3 . This l)henomeflon,

called beam fanning, fuirtl: 'r ,andoinized the interconnections we recorded and at the same

time drastically increased the number of hidden neurons that input neurons are connected
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to. The writing beams in the first layer were polarized in the extraordinary direction with

respect to the crystal in order to obtain maximum fanning. In our experiment, each of

the input neurons were connected to about 105 hidden neurons. Therefore the resulting

weight matrix performs a dimension-expansion random mapping, which is exactly what is

needed in the implementation of the SDM model. After the first layer learning is finished,

th, iadorn interconnection hologram is thermally fixed 4 and training of the second layer

is then started.

The goal of the second layer training is that one of the 26 output neurons, with

spatial position proportional to the order of that letter in the alphabet, will be switched

on when a character pattern is presented at the input of the network. This was achieved

by training the second layer using the sum-of-outer-products rule. During this process,

the training patterns (in our case the character patterns) were presented at the network

input and randomly mapped into higher-dimensional hidden representations. These hidden

representations were thresholded and amplified by LCLV2 and Fourier transformed by lens

L5. Their Fourier transform holograms were recorded in association with reference plane

waves with appropriate spatial frequencies. The spatial frequencies of these reference

beams were chosen according to the identity of the input patterns such that the response

of the hidden layer was added to the weights of the interconnections leading to the output

neuron that is responsible for that input pattern. The control of the direction of the

reference beam was done with a mirror mounted on a motorized rotary stage controlled by

the computer. The writing beams were polarized in the ordinary direction and the reading

beam was polarized in the extraordinary direction, in order to give maximum diffraction

efficiency with minimum beam coupling during writing.

In order to compensate for the hologram decay in photorefractive crystals, an exposure

schedule 15 was followed during this learning process so that weight adaptation was done

linearly, i.e., holograms were formed with equal strength which essentially implemented

the sum of outei products in Eq. (1). Let A, be the amplitude of the ruth hologram

recorded. After a total of M exposures,

A,,, = 0 .o[1 - cxp( - "' )Icxl,(- f (2)
5T
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where A,, is the saturation amplitude of a hologram recorded in the photorefractive crysal,

t, is the exposure time for the ruth hologram, 7 is the characteristic time constant for

recording or erasing a hologram in the crystal. According to Ref. 15, if we want to obtain

maximum diffraction efficiencies of recorded holograms with Am = A,+, for all rn, the

exposure schedule that should be followed is given by

t,, = M > 1, (3)

with tj> 7. This yields

A. = Ao/M, m -- 1,2,...,M. (4)

In other words, the diffraction efficiency (in intensity) of each hologram is inversely pro-

portional to 112 . For recording of M holograms, the total exposure time is given by

M

t = tj = t lnM. (5)

The crystal we used for the second layer was an 8 mm-thick LiNbOa, doped with

0.01% Fe. Under our experimental condition, the time constant r was measured to be

425 seconds. During the network training, internal representations of 104 handwritten

character patterns, with 4 patterns from each of the 26 classes, need to be recorded in the

second-layer crystal with roughly equal diffraction efficiencies. The exposure time for each

of these holograms except the first one can be calculated from Eq. (3). For example, t2 =

295 seconds and t50 = 8.6 seconds. tl was chosen to be 25 minutes so that, according to

Eq. (2), the first hologram reached saturation or maximum efficiency. Therefore, with Al

104, the total exposure time is t = 5S minutes.

Another important issue is the finite angular bandwidth of volume holograms. If the

angular separation between the reference plane waves is too small, the presentation of any

character pattern at the input may reconstruct several plane waves so that several output

neurons (corresponding to these reference waves) will be turned on. This leads to crosstalk

or even misclassification. On the other hand, we want to keep the angular separation as

small as possible to facilitate the construction of the optical system. To find an appropriate
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angular separation, we need to examine the angular bandwidth of volume holograms in

the crystal, whioh is ,iv-n by 16

A
2n~dsinO '

where A is the laser wavelength in vacuum, 0, is the angle of incidence of the writing beams

in the crystal and d is the hologram thickness. In our experiment, the angle of incidence of

the writing beams in the air is O = 200 and the index of refraction of the LiNbO3 crystal

is n, = 2.29. Therefore 0, can be solved from

n'sinOc = siro, (7)

which gives Oc = 8.6'. With A = 0.514pm., d = 8mm and using Eq. (6), AO, = 0.0054'.

Finally, we can find the angular bandwidth in the air by differentiating Eq. (7), which

yields

AOo = AOnccosO,/cosOo = 0.013'. (8)

To make sure that crosstalk due to the finite angular bandwidth is completely suppressed,

we chose angular separation between reference beams to be 0.03'. Therefore the total

angular sweep of the reference beam is 26 x 0.03' = 0.78', which is reasonable for the

motorized rotary stage and at the same time guarantees overlapping of the two writing

beams in the crystal.

A photograph of the experimental system is shown in Fig. 3. Figure 4 shows the

experimental result, which includes the input patterns, their internal representations, and

the responses of the output neurons. The input patterns shown in Fig. 4 were among

those used for training the network. The different positions of the bright dots indicates

which output neuron has the strongest response. As can be seen from Fig. 4, crosstalk was

completely suppressed in these cases, mainly due to the drastically expanded dimension of

the hidden representations and the nonlinear thresholding operation of the neurons. We

can also observe the differences between hidden representations for different input pat terns.

To check the generalization property of this network, 520 handwritten character pat-

terns, with 20 patterns from each class, were presented to the network and the identity

7



of each pattern was determined from which output neuron liad the maxiiiuln resl)ouse.

Figure 5 shows sonic of the testing patterns and the result is summnarized in Fig. 6. which

gives the number of correct classifications out of 20 tests for each class. 311 out of the 520

testing patterns were correctly classificd, yielding a recognition rate of about GO{.

4. Discussion

Although the generalization property of our optical network is not quite satisfactory

due to the fixed first layer weights and the limited number of training cycles for the

second layer, its performance can be greatly improved if we train both layer using some

error descent algorithm. Typically these iterative error-driven algorithms require at least

thousands of learning cylces, which means that the optical system will have to handle huge

number of hologram exposures. Previously recorded photorefractive holograms, however,

decay as new holograms are being recorded. Simulations have shown that learning is

practically impossible with decay rate given by Eq. (4) if thousands of learning cycles

are needed. The crucial problem we will have to solve before a fully trainable multilayer

network can be built is, therefore, to control the hologran decay rate. I urthermore.

existing learning algorithms need be modified to match the current hardware technolgy

and simplify optical system design. The success of these efforts should result in a fully

trainable multilayer optical neural network with tremendous computational power and

learning capability.
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FIGURE CAPTIONS

1. Kanerva's Sparse, Distributed Memory (SDM) Model.

2. Optical System Layout for the Two-Layer Neural Network. VM = Video MIonitor,

LCLV = Liquid Crystal Light Valve, PR = Photorefractive Crystal, (P)BS = (Polar-

izing) Beam Splitter, RM = Rotating Mirror, L = Lens, S = Shutter.

3. Experimental Setup of the S stem in Fig. 2.

4. Examples of the Signals at the Input (top), Hidden (middle), and Output (bottom)

Layers in the Experimental System.

5. Examples of the Test Patterns.

6. Histogram of the Test Results.
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